Bryophyte diversity and associated invertebrate communities along altitudinal habitats in Sindhupalchok District of central Nepal.

NIRMALA PRADHAN and BHAIYA KHANAL*

*Natural History Museum, Tribhuvan University, Kathmandu, Nepal. Emails: bryonep@yahoo.com, baya2000@live.com

Abstract: Pradhan, N. and Khanal, B. (2023): Bryophyte diversity and associated invertebrate communities along altitudinal habitats in Sindhupalchok District of central Nepal. *Frahmia* 35:1-9.¹

This study brought a list of 100 bryophyte species divided into 13 orders, 36 families, and 60 genera. Bryofloral environments displayed invertebrates, predominantly arthropods, which included 21 orders and 86 species from 64 families. The observed invertebrates were residents, passersby, or transitory over bryophyte-covered areas. This study, conducted from August to October, covered an elevation range of 800 to 2000 meters. The correlation (r) between bryophytes and insects along altitudinal habitats was non-significant and negative (r = -0.1328). The Shannon-Weiner Index of 3.34 and 3.78 for bryophytes and invertebrates, indicated good diversity, and Simpson's Index of 0.0332 and 0.0233 showed high diversity and were evenly distributed with Equitability Index of 0.93 and 0.9357 for bryophytes and invertebrates, respectively.

1. Introduction

Since bryophyte and invertebrate communities may be found everywhere, from the tropics to the poles and from sea level to above the tree line, they are extremely important for latitudinal and altitudinal research (Andrew et al. 2003). The faunal association of bryophytes is a crucial aspect to study, as many of the potential habitats of this plant have been heavily impacted by anthropogenic causes. This small flora grows on the ground, on tree trunks, on walls, or on any other object where it finds its optimal conditions of biophysical gradients. This ground flora provides shelter and wandering ground for different invertebrate groups. The diversity of bryophytes decreases with the rise in elevation above 3000 m (Begon et al. 1990), followed by a decrease with associated invertebrate species.

According to Merry Field and Royce (2002), several aquatic invertebrates that are related to mosses have evolved to tolerate the periodic drying of their habitats. The soil nematodes are good examples of invertebrates that find their shelter in bryophyte habitats. Many invertebrates have a significant food source in bryophytes bodies (Suren, 1993). The mid-altitudinal range displays high diversity, according to a prior study conducted in the tropics (Andrew et al. 2003).

FRAHMIA 35 (2023)

¹ Published: July 31, 2023

Ramazzotti (1958) and Gadea (1964) separated ombrophilous and erogenous moss animals, putting those that dwell entirely in bryophytes in the first category and those that just spend a portion of their life cycle there in the latter. They focused mostly on the tiny water fauna (Protozoa, Porifera, and Nematodes), which cannot carry water from the soil to higher tissue because they lack vascular structure. Bryophytes need constantly shaded environments, grow damp, and receive plenty of rain frequently.

The invertebrate fauna is likely to play an important role in the bryophyte community by facilitating the return of detritus matter to ecosystem-level nutrient cycling (Glime, 2013). Merrifield and Ingham (1998) suggested that the diversity of feeding strategies found in moss invertebrate communities provides evidence of within-bryophyte community nutrient cycling.

Gerson (1982) mentioned that the bryophytes can also serve as food for some invertebrates like beetles, orthopterans, collembolan, caterpillars, or aphids. Mosses represent a food component of the ground hopper *Tetrix ceperoi*, whose main diet component is *Bryum argenteum* (Koárek et al. 2008). Several detritophagous species (such as millipedes, woodlice, and earthworms) find food sources in bryophyte growths too.

2. Material and methods

Study area

This study was conducted in Sindhupalchok district (Map 1), which stands at the geographical position of 27° 36' N to 28° 13' N and 85° 27' E to 85° 85' E with an area of 2542 km². This district is connected to Kathmandu through Sankhu of Bhaktapur district and borders

Map.1. Map of Nepal showing study area indicated by white bordered black spot

Rasuwa to the west and Kavrepalanchok to the south (Department of Information 1971). The area lies in subtropical to alpine regions experiencing hot and cold climates.

Forceps were used to collect invertebrates from the bryophyte substrate and then stored in tiny vials with 70% Ethyl alcohol. The collected bryophyte substrate was shaken again to drop the remaining specimens of invertebrates onto a white tray or piece of cloth. The collection of bryophytes was made using grids of 11-inch squares from 10 grids spaced 10 metres apart. Lal (2017), Venkataraman (2010), and Jonathan and Kulkarni (1986) were consulted for invertebrate identification. The recorded bryophytes were identified by consulting books by Gangulee (1969–1988), Kashyap (1972), Pradhan (2015), Pradhan and Shrestha (2021–2022), Smith (1980), and Zhu and So (1996).

2

FRAHMIA 35 (2023)

The Shannon-Wiener diversity index is a quantifiable measure used to determine species richness (the number of species within the community). This Index (H) was calculated using the equation H = - $p_i(\log p_i)$, where p_i is the proportion of each species in the sample. The proportion of species *i* relative to the total number of species (p_i) is calculated and then multiplied by the natural logarithm of this proportion (ln p_i). The resulting product is summed across species and multiplied by 1. The values of the Shannon diversity index typically lie between 1.5 and 3.5.

The species richness of bryophytes and invertebrate species at various altitudinal settings was also measured using Simpson's richness Index (D) with the formula, $D = \sum n_i (n_i-1) / N(N-1)$ where n is the total number of organisms of certain species and N is the total number of organisms across all species. The lower the value of Shannon's index indicates low diversity and lower the value of Simpson's index (range: 0-1) indicates high diversity. The inverse of Simpson's index is positively correlated with Shannon's index.

Equitability Index assumes a value between 0 and 1 with 1 being complete evenness. The Shannon's equitability was calculated: $J=H/H_{max}$, where, H is the Shannon-Wiener's diversity index and H_{max} is the log₂ of S, where, S is the total number of species in the sample.

The correlation coefficient (r) was used to determine the relationship between the two variables.

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n\sum x^{2} - (\sum x)^{2}][n\sum y^{2} - (\sum y)^{2}]}}$$

r = Correlation Coefficient, X and Y = Variables, N = Number of Variable

3. Resulats

Invertebrates, mostly arthropods, were observed on bryofloral grounds, as were some insects and invertebrates. Except for one mollusk and two annelids, the 64 families of invertebrates in this study were largely made up of arthropods (Fig. 1). These invertebrates are directly or indirectly associated with bryophyte habitats. They appeared to be temporarily wandering on bryofloral patches; some were observed between the thalli, and others were clinging to their rhizoids.

A rich diversity of bryophytes was recorded in this region, which represented all three divisions: Anthocerotophyta, Marchantiophyta, and Bryophyta. Anthocerotophyta represented 2 families, 2 genera, and 4 species. The diversity of Marchantiophyta noted in this study was 19 families, 23 genera, and 39 species, while the next division, Bryophyta, was a little higher in diversity with 16 families, 35 genera, and 57 species and included both acrocarpous and pleurocarpous mosses (Appendix I). Overall, 100 species of this plant recorded in this study were associated differently with invertebrates at varying altitudinal ranges (Fig. 1).

Bryophytes			Invertebrates		
EI	S- WI	SI	EI	S-WI	SI
0.93	3.34	0.0332	0.9357	3.78	0.0233

Table 1. Evenness and diversity indices of Bryopytes and Invertebrates in study areas (EI= Equitable Index; S-W I= Shannon Weiner Index; SI= Simpson Index)

FRAHMIA 35 (2023)

3

The Shannon-Weiner Index (S-WI) 3.34 and 3.78 for bryophytes and invertebrates respectively indicated a good diversity within the range of 1.5 to 3.5. The Equitable index (EI) for both groups indicated that they are almost even in distribution (Table 1). Simpson's Index (SI) lower values of 0.0332 and 0.0233 for bryphytes and invertebrates respectively showed a high diversity, this index is inversely proportional to Shannon and Weiner Index (Table 1).

Fig.1. Bar graph shows associated species of bryophytes and Invertebrates recorded in studied areas of Sindhupalchok District of central Nepal.

This study showed a negative relationship between bryophytes and invertebrates as indicated by the correlation coefficient, r = -0.1328.

A list of bryophyte species and associated invertebrates is provided in Appendix I.

4. Discussion

Nematodes were typically seen on the moist substrates of many bryophytes. The mesic forest, which offers a home to numerous invertebrates, is the most significant environment for the flourishing of many bryophyte species. Numerous spider and beetle species also preferred the moist environment. A few invertebrates like millipedes, slugs, and snails were found on patches of this green plant.

Mosses alter soil conditions and affect the distribution of several arthropod species (Gerson, 1969). Arthropod survival and abundance frequently depend on the existence of mosses in harsh conditions. Some of their capsules attract flies, which then disperse their spores over greater distances. Insects that are frequently discovered in moss-covered areas are mostly flies (Diptera). Bozanic et al. (2013) made an effort to clarify the parameters that affect invertebrates which live in moss clumps in the Czech Republic. They looked at 61 faunal samples of 15 different moss species, which revealed a list of 45 different invertebrate species of 13 different taxonomic groups. They discovered that the size of the moss clumps and the height above ground were two main variables affecting the invertebrate population.

Many insects, especially beetles, were seen sheltering under bryophyte colonies, and earthworms were noted under the soil surface, remaining close to the rhizoids of some bryophyte species. Andrew et al. (2003) recorded that six of the invertebrate families in bryophyte habitats at Mt. Rufus locations were unique, and five of them were noted at one location only. He also stated that 97% of

4

FRAHMIA 35 (2023)

invertebrates noted in bryophyte habitats in New Zealand were from the orders Collembola (60%), Acari (28%), and Diptera (9%). In their study, they also reported on 45 families of invertebrates.

5. Acknowledgements

The Rufford Foundation is credited for the small grant provided to the first author to launch this study. We appreciate Mr. Madan Krishna Shrestha's (zoologist) important field assistance. Our thanks to the Natural History Museum in Kathmandu for providing us with the official space to work with the gathered specimens for this project.

6. Bibliography

- ANDREW, N.R., RODGERSON, L. AND DUNLOP, M. (2003). Variation in Invertebratebryophyte community structure at different spatial scales along altitudinal gradients. *Journ. Biogeography* 30 (5): 731-746.
- BEGON, M., HARPER, J.L. AND TOWNSEND, C.R. (1990). Ecology: Individuals, populations and communities, Blackwell, Melbourne.
- BOŽANIĆ, B., HRADÍLEK, Z., MACHAČ, O., PIŽL, V., ŠŤÁHLAVSKÝ, F., TUFOVÁ, J., VÉLE, A. AND HADRIÁN I. (2013). Factors Affecting Invertebrate Assemblages in Bryophytes of the Litovelské Luhy National Nature Reserve, Czech Republic. Acta zool. bulg., 65 (2): 197-206.
- DEPARTMENT OF INFORMATION. (1971). Madhyamanchal. Mechidekhi Mahakali, Department of information, Nepal Government. Nepal.
- GADEA, E. (1964). Sobre la nematofauna muscícola liquenícola de la islas Pitiusas. *Pub. Inst. Biol. apl. Barcelona*, 37: 73–93.
- GANGULEE, H.C. (1969-1980). Mosses of Eastern India and Adjacent Regions (Vol. I-III). Books and Allied Ltd., India: 1-2145.
- GERSON, U. (1969). Moss-arthropod associations. The Bryologist, 72 (4): 495-500.
- GERSON, U. (1982). Bryophytes and invertebrates. *In*: A.J.E. Smith (Eds.), *Bryophyte Ecology*: 291-332.
- GLIME, J. M. (1913). Aquatic insects: Bryophyte roles as habitats. Chapt. 11-2. *In*: Glime, J. M. *Bryophyte Ecology*, Bryological Interaction Vol.2, Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
- JONATHAN, J.K. AND KULKARNI, P. P. (1986). Collection, Preservation and Identification of Insects and Mites of Economic Importance (Eds. B.K. Tikadhar), Zoological Survey of India Calcutta, India: 1-307.
- KASHYAP, S.R. (1972). Liverworts of Western Himalaya and Panjab Plain. Researco Pubs, Trinagar, Delhi, India.
- KOČÁREK, P., J. HOLUSA, VLK, R., MARHOUL, P. AND ZUNA-KARTHY, T. (2008). Recent expansions of the bush-crickets *Phaneroptera falcata* and *Phaneroptera nana* (Orthoptera: Tettigoniidae) in the Czech Republic, *ARTICULATA* 2008 23 (1): 67-75
- LAL, O.P. (2017). Recent Advances in Indian Entomology. Associated Pubs. Co., India. MERRIFIELD, K. AND INGHAM, R.E. (1998). Nematodes and other aquatic invertebrates in
- *Eurhynchium oreganum* from Mary's Peak, Oregon Coast Range. *The Bryologist*, 101: 505-511.
- MERRYFIELD, K. AND ROYCE. L. (2002). Invertebrate Communities in Mosses. Proceeding of Invertebrates in Captivity Conference, Oregon State University, USA.
- PRADHAN, N. (2015). Study of the Bryofloral Diversity, their current Status and Conservation Issues in Central and South Eastern Region of Sindhupalchok District, Central Nepal. Final Report submitted to Rufford Small Grant Foundation, U.K.

FRAHMIA 35 (2023)

PRADHAN, N. AND SHRESTHA, P. (2021). A Handbook of the Bryophytes of Nepal, Vol.1. Department of Plant Resources, National Herbarium and Plant Laboratories, Nepal:1-312.

PRADHAN, N. AND SHRESTHA, P. (2022). A Handbook of the Bryophytes of Nepal, Vol.2. Department of Plant Resources, National Herbarium and Plant Laboratories, Nepal: 1-181.

RAMAZOTTI, G.(1958). Note sulle biocenosi dei muschi. Memorie Ist. Ital.Idrobiol., 10:153– 206.

SMITH, A.J.E. (1980). Moss flora of Britain and Ireland. Cambridge University Press, U.K.

SUREN, A., (1993) Bryophytes and associated invertebrates in first-order alpine streams of Arthur's Pass, New Zealand, New Zealand Journal of Marine and Freshwater Research, 27:4: 479-494, DOI: 10.1080/00288330.1993.9516589

VENKATARAMAN, V. (2010). A Concise Field Guide to Indian Insects and Arachnids Simova Education and Research Private Limited, India, ISBN: 9788178780108.

ZHU, R. L. & SO, M.L. (1996). *Mosses and Liverworts of Hong Kong, Vol.2*. Heavenly People Depot., Hong Kong:1-130.

Appendix I

Bryophytes and Associated Invertebrates (800-2000 m)

Bryophytes		Invertebrates			
Family	Scientific name	Elevation	Family	Scientific name	
Anthocerotaceae	Anthoceros chambensis	1480	Thripidae	Scirtothrips dorsalis	
Anthocerotaceae	Anthoceros punctatus	1450	Carabidae Acrididae	Carabus sp. Hieroglyphus banian	
Anthocerotaceae	Anthoceros longii	1300	Carabidae Mutillidae	<i>Trechus himalayanus</i> Velvet Ants	
Notothyladaceae	Phaeoceros laevis	1700	Lucanidae	Dorcus antaeus	
Aytoniaceae	Asterella multiflora	1480-2000	Scarabaeidae Forficulidae Gryllidae	Eupatorus sp. Forficula beelzebub Gryllotalpa africana	
Aytoniaceae	Asterella wallichiana	1450	Tenebrionidae	Acropteryx sp.	
Aytoniaceae	Plagiochasma appendiculatum	1300	Halticidae Plectidae	Haltica sp. Plectus sp.	
Aytoniaceae	Plagiochasma pterospermum	1700	Chrysomelidae	Laccopters quadrimaculata	
Aytoniaceae	Reboulia hemispherica	1450-2000	Cerambicidae	Hoplocerambyx spinicornis	
Cephaloziaceae	Cephalozia bicuspidata	800	<u>Coccinellidae</u>	Coccinela septopunctata	
Cephaloziellaceae	Cephaloziella calyculata	800	Sepsidae	Dicranosepsis bicolor	
Conocephalaceae	Conocephalum conicum	1250-2000	Acrididae Formicidae	Hieroglyphus banian Aphaenogaster sp.	
Conocephalaceae	Conocephalum japonicum	960-1800	Mantidae	Mantis religiosa	
Cyathodiaceae	Cyathodium tuberosum	800-1700	Blattidae	Periplaneta americana	
Dumortieraceae	Dumortiera hirsuta	800-1300	Apidae	Apis dorsata	
Frullaniaceae	Frullania ericoides	1740	Vespidae	Polistes sp.	
Frullaniaceae	Frullania delatata	980-1200	Apidae	Orientalibombus sp.	

FRAHMIA 35 (2023)

T 11 '	T 11 '	1200 1040	F C 11	
Fruitaniaceae	Fruttania muscicola	1280-1840	Forficulidae	<i>Forficula</i> sp.
Frullaniaceae	Frullania tamarisci	1310-1800	Forficulidae	Forficula acris
Jungermanniaceae	Jungermannia atrovirens	980	Forficulidae	Forficula beelzebub
Jungermanniaceae	Jungermannia exertifolia	870-1250	Forficulidae	Eparchus insignis
Jungermanniaceae	Jungermannia hyaline	800-1440	Labiduridae	Labidura riparia
Jungermanniaceae	Jungermannia subelliptica	830-1530	Aphididae	Aphis sp.
Jungermanniaceae	Jungermannia truncate	820-980	Cicadidae	Platylomia radah
Leieuneaceae	Leieunea cavifolia	960-1800	Ameroseiidae	Epicrionsis sp
Lepidoziaceae	Bazzania tridens	800-1700	Lampyridae	Luciola cruciata
Lophocoleaceae	Heteroscyphus	800-1300	Chironomidae	Midges
Lophocoleaceae	Heteroscyphus planus	1740	Simuliidae	Simulium sp.
Lophocoleaceae	Lophocolea minor	980-1200	Calliphoridae	Calliphora sp.
Marchsntiaceae	Marchantia emarginata	1280-1840	Calliphoridae	Lucilia sp.
Marchsntiaceae	Marchantia	1310-1800	Tachinidae Saarabiidaa	Tachinid sp.
Marchsntiaceae	Marchantia polymorpha	980	Culicidae	Anophilus sp.
Metzgeriaceae	Metzgeria conjugata	870-1250	Tabanidae	Tabanus rubidius
Metzgeriaceae	Metzgeria hamata	1500-2000	Culicidae	Anopheles culicifacies
Myliaceae	Mylia taylorii	820-980	Tipulidae	Tipula sp
Plagiochileaceae	Plagiochila	830-1530	Sarconhagidae	Sarconhaga crassinglnis
Tagioenneaceae	chinensis	050-1550	Sarcophagidae	Surcophaga crassipaipis
Porellaceae	Porella nitens	820-980	Muscidae	Musca domestica
Riccaceae	Riccia crystallina	900-1000	Anthomyiidae	Delia platura
Riccaceae	Riccia discolor	800-1350	Aphididae	Capitophorus sp.
Riccaceae	Riccia pathankotensis	800	<u>Cicadidae</u>	Platylomia radah
Scapaniaceae	Scapania undulata	800	Lygaeidae	<i>Lygaeus</i> sp.
Targioniaceae	Targionia hypophylla	1200-1840	Gryllotalpidae	Gryllotalpa orientalis
Bartramiaceae	Philonotis mollis	900-1000	Lvcaenidae	Zizeeia maha
Bartramiaceae	Philonotis thwaitsii	800-1350	Lycaenidae	Freyeria putli
Bartramiaceae	Philonotis turneriana	800	Lycaenidae	Celastrina pusp
Brachytheciaceae	Brachythecium buchanii	800	Lycaenidae Nymphalidae	Arophala sp. Argyreus hyperbius
Brachytheciaceae	Eurhynchium	1200-1840	Nymphalidae	Precis inhita
Drachy incenaceae	proelongum	1200-1040	1 ymphandae	

Brachytheciaceae	Eurhynchium reparoides	1750-1825	Pieridae	Pieris brassicae
Bryaceae	Anomobryum julaceum	850-1530	Nymphalidae Ichneumonidae	Eurema brigitta Megarhyssa sp.
Brvaceae	Bryum apiculatum	1490	Pieridae	Eurema hecabe
Bryaceae	Bryum argenteum	950-1600	Nymphalidae	Callerebia scanda
Bryaceae	Bryum capillare	1090-1650	Nymphalidae	Mycalesis sp
Bryaceae	Bryun coronatum	800-900	Frebidae	Cyana sp
Bryaceae	Pohlia flexuosa	850-1250	Erebidae	Spilosoma punctaria
Bryaceae	Pohlia leucostoma	1050	Erebidae	I emvra stiomata
Bryaceae	Rhodobryum	1400-1540	Erebidae	Spilaractia casionata
Diyaccae	giganteum	1400-1540	Licoldae	Spharaena easignana
Calymperaceae	Octoblepharum	1200-1300	Erebidae	Creatonotus gangis
J	albidum			00
Dicraniaceae	Campylopus	850-1450	Erebidae	Mangina argus
	ericoides			
Dicraniaceae	Campylopus	930-1330	Erebidae	Areas galactina
	nilghriensis			
Dicraniaceae	Garckea phascoides	850-1450	Erebidae	Euproctis sp.
Dicraniaceae	Trematodon	950-1600	Erebidae	Asota caricae
	longicolle		Scarabaeidae	Onthiophagus sp.
Entodontaceae	Erythrodontium julaceum	1760	Erebidae	Amata bicincta
Entodontaceae	Entodon prorepens	1400-1500	Geometridae	Arichanna sp.
Fissidentaceae	Fissidens bryoides	870-1300	Zvgaenidae	Campylotes histrionicus
Fissidentaceae	Fissidens	870-1900	Notodontidae	Gazalina chrysolopha
	cevlonensis			
Fissidentaceae	Fissidens crenulatus	820-1450	Libellulidae	Orthefrum sabina
Fissidentaceae	Fissidens javanicus	820-1380	Gomphidae	Lamelligomphus biforceps
Fissidentaceae	Fissidens nobilis	1300-1650	Araneidae	Araneus sp.
Fissidentaceae	Fissidens robinsonii	900-980	Salticidae	Saltis. sp.
Fissidentaceae	Fissidens sylvaticus	820-1750	Salticidae Erebidae	Bocus sp. Spilosoma casignatum
Fissidentaceae	Fissidens taxifolius	900-2000	Gnaphosidae	Gnaphosa sp.
Funariaceae	Funaria	840-1550	Araneidae	Cyclosa sp.
	hygrometrica		Forficulidae	Forficula sp.
Funariaceae	Physcomitrium eurystomum	840-900	Sparassidae	Heteropoda sp.
Hypnaceae	Taxiphyllium	780-1590	Lumbricidae	Lumbricus terrestris
J	taxirameum		Forficulidae	Eparchus insignis
Mniaceae	Mnium rostratum	1890	Hirudinidae	Hirudo medicinalis
Plagiotheciaceae	Plagiothecium neckeroideum	1500	Dorylaimidae	<i><u>Eudorylaimus</u></i> sp.
Polytrichaceae	Pogonatum aloides	1700	Plectidae	Plectus sp
Polytrichaceae	Pogonatum	1950	Dorylaimidae	Eudorylaimus sp
Torytrenaceae	microphyllum	1750	Doryrannidae	Luuoryuumus sp.
Pottiaceae	Anoectangium thomsonii	1150	Blattidae	Periplaneta americana
Pottiaceae	Barbula constricta	830-1270	Culicidae	Anopheles culicifacies
Pottiaceae	Barbula indica	1500	Labiidae	Labia sp.

FRAHMIA 35 (2023)

Pottiaceae	Bryoerythrophyllum recurvirostrum	860	Psychodidae	Phleobotomus sp.
Pottiaceae	Hydrogonium arcuatum	850-1600	Cicindellidae Hirudinidae	Cicindela virgule Hirudo medicinalis
Pottiaceae	Hyophila involuta	820-1490	Lucanidae Chrysomelidae	Dorcus antaeus Laccoptera quadrimaculata
Pottiaceae	Merceya gediana	800-1360	Gryllotalpidae	Gryllotalpa major
Pottiaceae	Semibarbula orientalis	850	Dorylaimidae	Eudorylaimus sp.
Rhytidiaceae	Rhytidium rugosum	850-1300	Arctiidae	Spilosoma casignatum
Stereophyllaceae	Entodontopsis anceps	800-1300	Nymphalidae Dorylaimidae Chrysomelidae	Acraea issoria Eudorylaimus sp. Colasposoma semicostatum
Stereophyllaceae	Entodontopsis leucostega	800-1530	Lygaedae	Lygaeus sp.
Stereophyllaceae	Entodontopsis wightii	800	Megascolecidae	Pheritima posthuma
Thuidaceae	Haplocladium angustifolium	1300-1500	Tipulidae	<i>Tipula</i> sp.
Thuidaceae	Herpetineuron toccoace	800-1400	Chrysomelidae	Corynodes pyrophorus
Thuidaceae	Thuidium cambifolium	980-1600	Acridiidae	Hieroglyphus banian
Thuidaceae	Thuidium glaucinoides	1470	Forficullidae	Forficula acris
Thuidaceae	Thuidium tamariscellum	980-1500	Coccinellidae	Cocinella spetopunctata